Massachusetts Institute of Technology
 Organic Chemistry 5.512

May 4, 2007
Prof. Rick L. Danheiser

Unit 9

Stereocontrolled Hydroboration and Dihydroxylation of Alkenes

* Substrate Control: 1,2-Asymmetric Induction in Hydroboration
\star Reagent Controlled Hydroboration
Substrate Control: 1,2-Asymmetric Induction in Dihydroxylation
Reagent Controlled Dihydroxylation: Sharpless ADH Reaction

Background Reading

Carey and Sundberg (Part B) 4th Ed. (2001) Chapter 4 pp 226-241 (Hydroboration), Chapter 12 pp 757-762 (Dihydroxylation), and Chapter 12 pp 762-782 (Epoxidation - the next unit)

Review on Hydroboration

"Catalytic Asymmetric Hydroboration: Recent Advances and Applications in Carbon-Carbon BondForming Reactions" Crudden, C. M.; Edwards, D. Eur. J. Org. Chem. 2003, 4695

Reviews on Asymmetric Dihydroxylation and Aminohydroxylation

"Catalytic Asymmetric Dihydroxylation: Discovery and Development" Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH, 2000, pp 357-398
"Recent Advances in Asymmetric Dihydroxylation and Aminohydroxylation" Bolm, C.; Hildebrand, J. P.; Muniz, K. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH, 2000, pp 398-428.

H. C. Brown

Sharpless Asymmetric Dihydroxylation

Review on Sharpless ADH

"Catalytic Asymmetric Dihydroxylation" Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483
"Asymmetric Dihydroxylation" Becker, H.; Sharpless, K. B. In Asymmetric Oxidation Reactions; Katsuki, T., Ed.; Oxford, 2001, pp 81-104.
"Asymmetric Aminohydroxylation" Schlingloff, G.; Sharpless, K. B. In Asymmetric Oxidation Reactions; Katsuki, T., Ed.; Oxford, 2001, pp 104-114.

Retrons

Generally very good selectivity for E-disubstituted and trisubstituted alkenes (for either enantiomer)

Borderline to good selectivity for terminal alkenes and 1,1disubstituted alkenes (use AQN ligand for aliphatic derivatives)

AD-mix $\boldsymbol{\alpha} \quad(\mathrm{DHQ})_{2} \mathrm{PHAL}+\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}+\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$
$\$ 81.70 / 50 \mathrm{~g}$
AD-mix $\boldsymbol{\beta} \quad(\mathrm{DHQD})_{2} \mathrm{PHAL}+\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}+\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$

Cinchona Alkaloid Ligands for AD under Catalytic Conditions

Dihydroquinidine ($\mathrm{R}=\mathrm{H}$) DHQD

Dihydroquinine $(\mathrm{R}=\mathrm{H})$ DHQ

(DHQD) ${ }_{2}$ PHAL (phthalazine)
(DHQD) ${ }_{2}$ AQN
(anthraquinone) $500 \mathrm{mg} \$ 65.50$

Organic Syntheses Procedures

McKee, B. H.; Gilheany, D. G.; Sharpless, K. B. Org. Synth. 1992, 70, 47

Oi, R.; Sharpless, K. B. Org. Synth. 1996, 73, 1

Case Study

Synthesis of $\mathrm{C}_{6}-\mathrm{C}_{13}$ Fragment of Miyakolide
S. Masamune et al. J. Org. Chem. 1997, 62, 8978

